Properties and structure of glasses in the system $10K_2O \cdot 20BaO \cdot 70(SiO_2, GeO_2, B_2O_3)$

G. A. C. M. SPIERINGS

Philips Research Laboratories, Eindhoven, The Netherlands

Density, refractive index, glass transiton temperature and expansion coefficient of glasses in the system $10K_2O \cdot 20BaO \cdot (70 - x - y)SiO_2 \cdot xGeO_2 \cdot yB_2O_3$ (mol %) have been determined. The structure of these glasses is discussed with emphasis on the shifts occurring in the boron and germanium coordination as a function of the relative concentrations of the three network-forming oxides. In GeO₂-rich glasses part of germanium is present as GeO₆ octahedra, which, upon the introduction of B₂O₃, are completely transformed into GeO₄ tetrahedra at y > 10.

1. Introduction

Interest in glasses with a relatively high BaO content arises from their potential use in optical fibre technology. Their large BaO content (combined with GeO_2) gives these glasses a relatively high refractive index, while the increase in intrinsic scattering and absorption is relatively small [1]. Consequently these glasses are particularly well suited as core glass in low-loss fibres of highnumerical aperture, in combination with a compatible cladding glass with a low refractive index. Such fibres give a high light-incoupling efficiency, which is important in optical fibre communication systems if light-emitting diodes are used as the light source. In this paper the properties (refractive index, density, expansion coefficient and glass transition temperature, T_{g}) and structure of glasses in the system 10K₂O·20BaO·70 (SiO₂, GeO₂, B_2O_3) (mol%) are reported.

A large number of papers have been published dealing with properties and structure of glasses that have a composition comparable with parts of the system studied here; see for example [2-10]. In oxidic glasses both boron and germanium occur as network-forming ions in two coordination sites. The coordination found in a particular glass depends to a great extent on the overall glass composition. Yun and Bray [10] using NMR (nuclear magnetic resonance) and Konijnendijk [11] using IR (infrared) and Raman spectroscopy have shown that boron in alkali (alkaline-earth) borosilicates can occur in BO₃ triangles and BO₄ tetrahedra. Germanium in alkali germanosilicate glasses occurs in GeO_4 tetrahedra and in GeO_6 octahedra. This has been observed in studies using laser Raman spectroscopy [12], molar refraction data [6], X-ray photoelectron spectroscopy [13] and viscosity data [7].

The structure of alkali (alkaline earth) borogermanate and borogermanosilicate has been discussed on the basis of data of physical properties, such as viscosity, density and molar refraction [8, 9, 14]. It has been shown that introduction of B_2O_3 in these glasses leads to a transformation of GeO_6 octahedra into GeO_4 tetrahedra. Maxima or minima in the relations between various physical properties and the composition of glasses which, among other components, contain B_2O_3 , GeO_2 or both, were often observed in these studies. These were usually ascribed to changes occurring in the relative concentrations of the two coordination types of either boron or germanium, or both.

2. Experimental details

2.1. Melting procedures

The glasses were prepared from K_2CO_3 , BaCO₃, B₂O₃ (reagent grade, E. Merck, Darmstadt, W. Germany), SiO₂ (α -quartz, Hereaus, Hanau, W. Germany) and GeO₂ (extra pure, Hoboken, Belgium) in batches of 400g. The target compositions of the glasses are given in Tables I to IV. The glasses were prepared by manually mixing the appropriate compounds, followed by melting in Pt-10% Rh crucibles in an electrically heated furnace. Melting

TABLE I Composition, melting temperature, refractive index, density, glass transition temperature and expansion coefficient of $10K_2O \cdot 20BaO \cdot (70-x)SiO_2 \cdot xGeO_2$ glasses (mol%)

x	T _{melt} (°C)	n _D	<i>D</i> (g cm ⁻³)	T _g (°C)	$\alpha \times 10^{-2}$
0	1450	1.5612	3.108	585	104
10	1400	1.5776	3.304	_	
20	1450	1.5944	3.456	555	107
30	1350	1.6130	3.619	-	101
40	1400	1.6319	3.780		105
50	1400	1.6536	3.952	525	106
60	1350	1.6737	4.123	_	_
70	1200	1.6940	4.290	505	108

temperatures T_{Melt} , which are given in Tables I to IV, varied from 1000 to 1450°C depending on the glass composition. Dried oxygen was bubbled through the melt for 1 h to acheive homogenization. After bubbling, the melt was cooled 100°C below the melting temperature in order to make it bubble-free. The melt was then poured into graphite moulds and kept at 600°C for 30 min. Subsequently the glass was cooled to room temperature by turning off the heating system of the furnace. This yielded glasses which in the region of T_g were cooled with 3°C min⁻¹.

2.2. Refractive index measurements

The refractive index n_D ($\lambda = 589.3$ nm) was measured with an Abbe refractometer (Zeiss, Oberkochen, Germany) with a precision of 2×10^{-4} . The refractive indices are given in Table I to IV and a contour map is shown in Fig. 1.

2.3. Density measurements

The density D was determined by weighing the glass samples both in water and in air (precision

TABLE II Composition, melting temperature, refractive index, density, glass transition temperature and expansion coefficient of $10K_2O \cdot 20BaO(70-y)SiO_2 \cdot yB_2O_3$ glasses (Mol%)

у	T _{melt} (°C)	ⁿ D	D(g cm ⁻³)	Т _g (°С)	$\alpha \times 10^{-7}$
0	1450	1.5612	3.108	585	104
10	1350	1.5757	3.211	-	92
20	1350	1.5831	3.239	580	89
30	1200	1.5829	3.208	~	92
40	1100	1.5806	3.153		86
50	1100	1.5764	3.091	535	91
60	1100	1.5714	3.025	Trian.	93
70	1000	1.5637	2.938	510	95

TABLE III Composition, melting temperature, refractive index, density, glass transition temperature and expansion coefficient of $10K_2O \cdot BaO(70-y)GeO_2 \cdot yB_2O_3$ glasses (mol%)

T _{melt} (°C)	n _D	D(g cm ⁻³)	Т _g (°С)	α × 10 ⁻⁷		
1200	1.6940	4.290	505	108		
1150	1.6782	4.148	-	103		
1150	1.6608	3.967	520	100		
1100	1.6241	3.591	n	93		
1100	1.6047	3.387	515	93		
1000	1.5637	2.938	510	95		
	Tmelt (° C) 1200 1150 1150 1100 1100 1000	$\begin{array}{c} T_{melt} & n_{D} \\ (^{\circ}C) & & \\ \hline 1200 & 1.6940 \\ 1150 & 1.6782 \\ 1150 & 1.6608 \\ 1100 & 1.6241 \\ 1100 & 1.6047 \\ 1000 & 1.5637 \end{array}$	$\begin{array}{c c} T_{melt} & n_{D} & D(g{\rm cm}^{-3}) \\ (^{\circ}{\rm C}) & & & \\ \hline 1200 & 1.6940 & 4.290 \\ 1150 & 1.6782 & 4.148 \\ 1150 & 1.6608 & 3.967 \\ 1100 & 1.6241 & 3.591 \\ 1100 & 1.6047 & 3.387 \\ 1000 & 1.5637 & 2.938 \\ \hline \end{array}$	$\begin{array}{c c} T_{melt} & n_D & D(g{\rm cm}^{-3}) & T_g \\ (^\circ{\rm C}) & & & (^\circ{\rm C}) \end{array} \\ \hline 1200 & 1.6940 & 4.290 & 505 \\ 1150 & 1.6782 & 4.148 & - \\ 1150 & 1.6608 & 3.967 & 520 \\ 1100 & 1.6241 & 3.591 & - \\ 1100 & 1.6047 & 3.387 & 515 \\ 1000 & 1.5637 & 2.938 & 510 \end{array}$		

 $5 \times 10^{-3} \,\mathrm{g \, cm^{-3}}$). The densities are given in Tables I to IV and a contour map is shown in Fig. 2.

2.4. Expansion coefficient measurements

The expansion coefficient α was determined with a horizontally placed displacement-measuring quartz dilatometer as described by Konijnendijk [11]. The expansion coefficients from 45 to 400° C are given in Table I to IV.

2.5. Glass transition temperature

The glass transition temperature T_g was measured by determining the temperature at which the characteristic endothermic peak in the DTA curve starts to appear [15]. DTA (differential thermal analysis) was performed by heating a crushed glass sample at the standard rate of 10° C min⁻¹. The transition temperature measured in this way is usually considered to be the temperature at which $\eta = 10^{13}$ dPa sec [15]. Values of T_g are given in Table I to IV and a contour map is shown in Fig. 3.

3. Discussion

The data presented in Tables II to IV and Figs. 1 to 3 show that when B_2O_3 is substituted for SiO₂ extremes are observed in properties such as expansion coefficient, density and refractive index. These extremes are most pronounced at x = 0(GeO₂-free glasses). Similar anomalies in physical properties when B_2O_3 is substituted for SiO₂ have been observed in many comparable glass systems (e.g. [2, 11]). This phenomenon is usually explained by assuming that at small contents of B_2O_3 , boron is incorporated as BO₄ tetrahedra in which it is surrounded by four bridging oxygens (BO's) resulting in a contraction of the glass network. It also explains why at x = 0 no decrease of T_g is observed at small B_2O_3 contents (Fig. 3).

Larger quantities of B_2O_3 are taken up in a

TABLE IV Composition, melting temperature, refractive index, density, glass transition temperature and expansion cofficient of $10K_2O \cdot 20BaO \cdot (70 - x - y)SiO_2 \cdot xGeO_2 \cdot yB_2O_3$ glasses (mol%)

x	у	T_{melt} (°C)	n _D	D (g cm ⁻³)	T_{g} (°C)	α × 10 ⁻⁷
5	5	1350	1.5779	3.286		<u> </u>
10	10	1400	1.5925	3.385	570	98
5	15	1350	15880	3.305	_	
15	8	1400	1.5985	3.455	_	
20	5	1400	1.6028	3.505		_
20	10	1250	1.6064	3.515	_	99
10	20	1200	1.5958	3.376	_	93
5	30	1200	1.5981	3.265	_	_
20	20	1150	1.6101	3.512	_	101
10	30	1150	1.5978	3.352	550	-
20	25	1200	1.6112	3.505	540	96
30	20	1100	1.6252	3.650	_	96
20	30	1150	1.6101	3.478	_	95
10	40	1100	1.5937	3.287	_	95
30	25	1100	1.6253	3.640	-	_
20	35	1150	1.6093	3.455	_	
50	10	1250	1.6614	3.991	_	106
40	20	1100	1.6417	3.802	_	99
30	30	1100	1.6261	3.632	530	94

variety of groups in which both BO_3 triangles and BO_4 tetrahedra are present [11]. In the BO_3 units one or more oxygens are of the non-bridging type, and consequently the tendency of the network to contract is reversed. This explanation for the extremes in physical properties is supported by NMR studies reported by Yun and Bray [10] and the results of laser Raman spectroscopy reported by Konijnendijk [11]. The latter author, however,

concluded that at small B_2O_3 contents predominantly metaborate groups $(B_3O_6^{3-})$ are formed which contain three non-bridging oxygens (NBO's).

As SiO₂ replaces GeO₂ (increasing x) the anomalies related to the BO₄ tetrahedra formation are preserved almost throughout the ternary system, although they become less pronounced. For the K-Ba-borogermanate glass (at x + y = 70) the

Figure 1 Contour map of refractive index n_D of $10K_2O \cdot 20BaO \cdot (70-x-y)$ SiO₂ • xGeO₂yB₂O₃ glasses (mol %).

minimum in α even turns into a slight maximum, while the *D* and n_D anomalies are no longer observed.

The latter effect is caused by the dominating influence of GeO_2 on both properties, overshadowing effects of boron coordination transformations. In order to investigate to what extent the germanium coordination is affected by B_2O_3 introduction, we calculated the molar refraction R_m for the two series of comparable glasses $10K_2 \cdot O20BaO(70-y)SiO_2 \cdot yB_2O_3$ (I) and $10K_2O \cdot 20BaO(70-y)GeO_2 \cdot yB_2O_3$ (II) using the Lorenz-Lorentz equations:

$$R_{\rm M} = \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \cdot \frac{\bar{M}}{D}$$

where \overline{M} is the mean molar weight, in this case

Figure 3 Contour map of transition temperature T_g (°C) of $10K_2O \cdot 20BaO$ (70-x-y)SiO₂· xGeO₂·yB₂O₃ glasses (mol%).

given by

$$\vec{M} = 0.7M(K_2O) + 0.2M(BaO) + (0.7 - x - y)M(SiO_2) + 0.01xM(GeO_2) + 0.01yM(B_2O_3).$$

 $R_{\rm m}$ is usually considered to be composed additively from the contributions of each type of ion *i* in the glass: the ionic refraction R(i) is proportional to the polarizability of the ion *i* and in most cases is independent of glass composition. Only $R(O^{2-})$ is significantly smaller for BO's than for NBO's, owing to the higher polarizability of the latter. For instance in *K* germanosilicate glasses $R(BO) = 3.70 \text{ cm}^3$ and $R(NBO) = 4.43 \text{ cm}^3$ [6]. A comparison of $R_{\rm m}$ values for glass systems I and II will reveal differences in the relative number of NBO's and BO's in the two series of glasses. The relative quantities of GeO₄ tetrahedra and GeO₆ octahedra can be determined because in the latter units Ge⁴⁺ is coordinated by BO's only.

To compare $R_{\rm m}$ of the two series of glasses I and II one has to take the high $R(\text{Ge}^{4+}) =$ 2.60 cm^3 compared with $R(\text{Si}^{4+}) = 0.04 \text{ cm}^3$ [11] into account by subtracting the contribution of $R(\text{Si}^{4+})$ or $R(\text{Ge}^{4+})$ from $R_{\rm m}$ for glasses I and II, respectively. One obtains for system I: $R_{\rm m}^*(\text{I}) =$ $R_{\rm m} - 0.04(0.70-0.01y)$ and for system II: $R_{\rm m}^*(\text{II}) = R_{\rm m} - 2.60(0.70-0.01y)$. Using the $R_{\rm m}^*$ values shown in Fig.4 a direct comparison is allowable.

For y = 0, $R_m^*(II)$ is smaller than $R_m^*(I)$ owing to the presence of GeO₆ octahedra, coordinated by BO's. According to Verweij and Buster [16] the $30R_20 \cdot 70GeO_2$ glass (y = 0) can be characterized as $60R^+ \cdot 66Ge(4) \cdot 4Ge(6) \cdot 118BO \cdot 52NBO$ and $30R_2O \cdot 70SiO_2$ as $60R^+ \cdot 70Si(4) \cdot 110BO \cdot 60NBO$. As y increases, the difference between $R_{\mathbf{m}}^*$ diminishes and at about y = 10 the two R_m^* -composition curves are almost identical. This indicates that borogermanate glasses with y > 10 no longer contain any GeO_6 octahedra. The substitution of a relatively small amount of B₂O₃ for GeO₂ was enough to completely transform the GeO₂ octahedra, present at y = 0, into GeO₄ tetrahedra. At y > 10 the glasses in series I and II have a largely comparable structure.

4. Conclusions

Glass formation is found for every composition in the system $10K_2O \cdot 20BaO(70 - x - y)SiO_2 \cdot xGeO_2 \cdot yB_2O_3$ (mol%). When B_2O_3 is substituted for SiO_2

Figure 4 A comparison between $R_{\mathbf{m}}^*$ for $10K_2O \cdot 20BaO$ $(70-y)SiO_2 \cdot yB_2O_3(0)$ and $10K_2O \cdot 20BaO(70-y)GeO_2 \cdot yB_2O_3(x)$, respectively, (mol %).

the well-known anomalies in physical properties are observed. Substitution of GeO_2 for SiO_2 results in a gradual change in physical properties without any anomalies. The physical properties of glasses with a high GeO_2 contend and low B_2O_3 content show that GeO_6 octahedra are present in these glasses. The GeO_6 octahedra are completely transformed into GeO_4 tetrahedra as the B_2O_3 content rises above y = 10.

Acknowledgement

The author gratefully acknowledges the technical assistance of B. H. van Bemmel, J. G. van Lierop, G. M. Melis and Miss W. Rexwinkel.

References

- 1. S. TAKAHASHI, S. MITACHI, S. SHIBATU and M. YASU, *Electron. Lett.* 14 (1978) 280.
- G. W. MOREY, "The properties of Glass' (Reinhold, New York, 1954).
- 3. Y. Y. HUANG, A. SARKAR and P. C. SCHULTZ, J. Non-Crystal. Solids 27 (1978) 29.
- 4. J. E. SHELBY, J. Appl. Phys. 45 (1974) 5272.

- 5. A. M. EFIMOV, E. K. MAZURINA, V. A. KHAR'YUZOV and M. V. PROSKURKYAKOV, *Fiz. Khim. Stekla* 2 (1976) 151.
- 6. H. VERWEIJ, J. H. J. M. BUSTER and G. F. REMMERS, J. Mater. Sci. 14 (1979) 931.
- 7. E. F. RIEBLING, J. Chem. Phys. 41 (1964) 451.
- 8. E. F. RIEBLING, P. E. BLASZYK and D. W. SMITH, J. Amer. Ceram. Soc. 50 (1967) 641.
- 9. G. A. C. M. SPIERINGS and G. P. MELIS, J. Mater. Sci. 16 (1981) 1059.
- 10. Y. H. YUN and P. J. BRAY, J. Non-Crystal. Solids 27 (1978) 363.
- 11. W. L. KONIJNENDIJK, Philips Research Reports Supplement No. 1 (1973).

- 12. H. VERWEIJ, J. Non-Crystal. Solids 33 (1979) 41, 55.
- 13. B. M. J. SMETS and T. P. M. LOMMEN, *ibid.* 46 (1981) 21.
- 14. Y. S. KRUPKIN and K. S. EVSTROP'EV, Neorg. Mater. 7 (1971) 1591.
- 15. M. PROD'HOMME, Rev. Phys. Appl. 12 (1977) 647.
- 16. H. VERWEIJ and J. H. J. M. BUSTER, J. Non-Crystal. Solids 34 (1979) 81.

Received 23 November 1982 and accepted 18 February 1983